3.1095 \(\int \frac{x^8}{\sqrt [4]{a+b x^4}} \, dx\)

Optimal. Leaf size=104 \[ \frac{5 a^2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )}{64 b^{9/4}}+\frac{5 a^2 \tanh ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )}{64 b^{9/4}}-\frac{5 a x \left (a+b x^4\right )^{3/4}}{32 b^2}+\frac{x^5 \left (a+b x^4\right )^{3/4}}{8 b} \]

[Out]

(-5*a*x*(a + b*x^4)^(3/4))/(32*b^2) + (x^5*(a + b*x^4)^(3/4))/(8*b) + (5*a^2*ArcTan[(b^(1/4)*x)/(a + b*x^4)^(1
/4)])/(64*b^(9/4)) + (5*a^2*ArcTanh[(b^(1/4)*x)/(a + b*x^4)^(1/4)])/(64*b^(9/4))

________________________________________________________________________________________

Rubi [A]  time = 0.0314346, antiderivative size = 104, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {321, 240, 212, 206, 203} \[ \frac{5 a^2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )}{64 b^{9/4}}+\frac{5 a^2 \tanh ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )}{64 b^{9/4}}-\frac{5 a x \left (a+b x^4\right )^{3/4}}{32 b^2}+\frac{x^5 \left (a+b x^4\right )^{3/4}}{8 b} \]

Antiderivative was successfully verified.

[In]

Int[x^8/(a + b*x^4)^(1/4),x]

[Out]

(-5*a*x*(a + b*x^4)^(3/4))/(32*b^2) + (x^5*(a + b*x^4)^(3/4))/(8*b) + (5*a^2*ArcTan[(b^(1/4)*x)/(a + b*x^4)^(1
/4)])/(64*b^(9/4)) + (5*a^2*ArcTanh[(b^(1/4)*x)/(a + b*x^4)^(1/4)])/(64*b^(9/4))

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 240

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + 1/n), Subst[Int[1/(1 - b*x^n)^(p + 1/n + 1), x], x
, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p
 + 1/n]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^8}{\sqrt [4]{a+b x^4}} \, dx &=\frac{x^5 \left (a+b x^4\right )^{3/4}}{8 b}-\frac{(5 a) \int \frac{x^4}{\sqrt [4]{a+b x^4}} \, dx}{8 b}\\ &=-\frac{5 a x \left (a+b x^4\right )^{3/4}}{32 b^2}+\frac{x^5 \left (a+b x^4\right )^{3/4}}{8 b}+\frac{\left (5 a^2\right ) \int \frac{1}{\sqrt [4]{a+b x^4}} \, dx}{32 b^2}\\ &=-\frac{5 a x \left (a+b x^4\right )^{3/4}}{32 b^2}+\frac{x^5 \left (a+b x^4\right )^{3/4}}{8 b}+\frac{\left (5 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{1-b x^4} \, dx,x,\frac{x}{\sqrt [4]{a+b x^4}}\right )}{32 b^2}\\ &=-\frac{5 a x \left (a+b x^4\right )^{3/4}}{32 b^2}+\frac{x^5 \left (a+b x^4\right )^{3/4}}{8 b}+\frac{\left (5 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{b} x^2} \, dx,x,\frac{x}{\sqrt [4]{a+b x^4}}\right )}{64 b^2}+\frac{\left (5 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{b} x^2} \, dx,x,\frac{x}{\sqrt [4]{a+b x^4}}\right )}{64 b^2}\\ &=-\frac{5 a x \left (a+b x^4\right )^{3/4}}{32 b^2}+\frac{x^5 \left (a+b x^4\right )^{3/4}}{8 b}+\frac{5 a^2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )}{64 b^{9/4}}+\frac{5 a^2 \tanh ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )}{64 b^{9/4}}\\ \end{align*}

Mathematica [A]  time = 0.0377192, size = 87, normalized size = 0.84 \[ \frac{5 a^2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )+5 a^2 \tanh ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )+2 \sqrt [4]{b} x \left (a+b x^4\right )^{3/4} \left (4 b x^4-5 a\right )}{64 b^{9/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^8/(a + b*x^4)^(1/4),x]

[Out]

(2*b^(1/4)*x*(a + b*x^4)^(3/4)*(-5*a + 4*b*x^4) + 5*a^2*ArcTan[(b^(1/4)*x)/(a + b*x^4)^(1/4)] + 5*a^2*ArcTanh[
(b^(1/4)*x)/(a + b*x^4)^(1/4)])/(64*b^(9/4))

________________________________________________________________________________________

Maple [F]  time = 0.028, size = 0, normalized size = 0. \begin{align*} \int{{x}^{8}{\frac{1}{\sqrt [4]{b{x}^{4}+a}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^8/(b*x^4+a)^(1/4),x)

[Out]

int(x^8/(b*x^4+a)^(1/4),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(b*x^4+a)^(1/4),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.60881, size = 525, normalized size = 5.05 \begin{align*} \frac{20 \, b^{2} \left (\frac{a^{8}}{b^{9}}\right )^{\frac{1}{4}} \arctan \left (-\frac{{\left (b x^{4} + a\right )}^{\frac{1}{4}} a^{6} b^{2} \left (\frac{a^{8}}{b^{9}}\right )^{\frac{1}{4}} - b^{2} x \left (\frac{a^{8}}{b^{9}}\right )^{\frac{1}{4}} \sqrt{\frac{a^{8} b^{5} x^{2} \sqrt{\frac{a^{8}}{b^{9}}} + \sqrt{b x^{4} + a} a^{12}}{x^{2}}}}{a^{8} x}\right ) + 5 \, b^{2} \left (\frac{a^{8}}{b^{9}}\right )^{\frac{1}{4}} \log \left (\frac{125 \,{\left (b^{7} x \left (\frac{a^{8}}{b^{9}}\right )^{\frac{3}{4}} +{\left (b x^{4} + a\right )}^{\frac{1}{4}} a^{6}\right )}}{x}\right ) - 5 \, b^{2} \left (\frac{a^{8}}{b^{9}}\right )^{\frac{1}{4}} \log \left (-\frac{125 \,{\left (b^{7} x \left (\frac{a^{8}}{b^{9}}\right )^{\frac{3}{4}} -{\left (b x^{4} + a\right )}^{\frac{1}{4}} a^{6}\right )}}{x}\right ) + 4 \,{\left (4 \, b x^{5} - 5 \, a x\right )}{\left (b x^{4} + a\right )}^{\frac{3}{4}}}{128 \, b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(b*x^4+a)^(1/4),x, algorithm="fricas")

[Out]

1/128*(20*b^2*(a^8/b^9)^(1/4)*arctan(-((b*x^4 + a)^(1/4)*a^6*b^2*(a^8/b^9)^(1/4) - b^2*x*(a^8/b^9)^(1/4)*sqrt(
(a^8*b^5*x^2*sqrt(a^8/b^9) + sqrt(b*x^4 + a)*a^12)/x^2))/(a^8*x)) + 5*b^2*(a^8/b^9)^(1/4)*log(125*(b^7*x*(a^8/
b^9)^(3/4) + (b*x^4 + a)^(1/4)*a^6)/x) - 5*b^2*(a^8/b^9)^(1/4)*log(-125*(b^7*x*(a^8/b^9)^(3/4) - (b*x^4 + a)^(
1/4)*a^6)/x) + 4*(4*b*x^5 - 5*a*x)*(b*x^4 + a)^(3/4))/b^2

________________________________________________________________________________________

Sympy [C]  time = 2.16015, size = 37, normalized size = 0.36 \begin{align*} \frac{x^{9} \Gamma \left (\frac{9}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{9}{4} \\ \frac{13}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt [4]{a} \Gamma \left (\frac{13}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**8/(b*x**4+a)**(1/4),x)

[Out]

x**9*gamma(9/4)*hyper((1/4, 9/4), (13/4,), b*x**4*exp_polar(I*pi)/a)/(4*a**(1/4)*gamma(13/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{8}}{{\left (b x^{4} + a\right )}^{\frac{1}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(b*x^4+a)^(1/4),x, algorithm="giac")

[Out]

integrate(x^8/(b*x^4 + a)^(1/4), x)